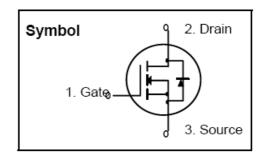
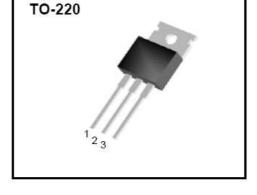
N-Channel MOSFET

Features


- ◆ R_{DS(ON)} Max 1.0 ohm at V_{GS} = 10V
- ◆ Gate Charge (Typical 18nC)
- Improve dv/dt capability, Fast switching
- ◆ 100% avalanche Tested


General Description

This MOSFET is produced using advanced planar strip DMOS technology. This latest technology has been especially designed to minimize on-state resistance have a high rugged avalanche characteristics. These device are well suited for high efficiency switch mode power supply active power factor correction. Electronic lamp based on half bridge topology

Absolute Maximum Ratings ($T_J = 25^{\circ}$ unless otherwise specified)

Symbol	Parameter	Ratings	Units	
V _{DSS}	Drain-Source Voltage		400	V
1	Drain Current T _C =25℃		6	А
Ι _D	T _C =100 ℃	T _C =100℃		
V _{GSS}	Gate-Source Voltage		± 30	V
I _{DM}	Drain Current pulse	(Note 1)	24	А
E _{AS}	Single Pulse Avalanche Energy	(Note 2)	350	mJ
E _{AR}	Repetitive Avalanche Energy	(Note 1)	7.6	mJ
dv/dt	Peak diode Recovery dv/dt	(Note 3)	4.5	V/ns
P _D	Power Dissipation $T_c=25^{\circ}C$		76	W
Tj, T _{STG}	Operation and Storage Temperature range		-45 ~ 150	°C

SFP6N40

SFP6N40

Thermal Characteristics

Symbol	Parameter	Ratings	Unit
R _{0JC}	Thermal Resistance Junction to Case	1.65	°C /W
R _{ecs}	Thermal Resistance Case to Sink Typ.	0.5	°C <i>T</i> W
$R_{\Theta JA}$	Thermal Resistance Junction to Ambient	62.5	°C /W

Electrical Characteristics (TC = 25° C Unless otherwise noted)

Symbol	Itomo	Conditions	Ratings			Unit
Symbol Items		Conditions	Min	Тур.	Max	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} = 0 V, I _D = 250uA	400			V
$\Delta \mathbf{BV}_{\mathrm{DSS}}$ / $\Delta \mathbf{T}_{\mathrm{J}}$	Breakdown Voltage Temperature coefficient	I _D =250uA, Reference to 25 $^\circ\!\!\!\!^\circ$		0.6		V/℃
I _{DSS}	Zero gate voltage Drain Current	V_{DS} = 400V, V_{GS} = 0V V_{DS} = 320V, T_{S} = 125 °C			1 10	uA
I _{GSSF}	Gate body leakage current Forward	V_{GS} = 30V, V_{DS} = 0V			100	nA
I _{GSSR}	Gate body leakage current Reverse	V _{GS} = -30V, V _{DS} = 0V			-100	nA

On Characteristics

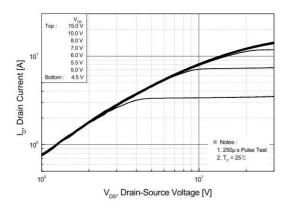
V _{GS(th)}	Gate Threshold Voltage	V_{GS} = V_{DS} , I_D = 250 uA	2.0		4.0	V
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} = 10V, I _D = 3.0A		0.75	1.0	Ω

Dynamic Characteristics

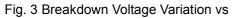
C _{iss}	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0V	520	pF
C _{oss}	output Capacitance	f = 1.0MHz	80	pF
C _{rss}	Reverse Transfer Capacitance		15	pF

Switching Characteristics

Symbol	Items	Conditions	Min	Тур.	Max	Units
t _{d(on)}	Turn-on Delay Time			15		ns
tr	Turn-on Rise Time	$V_{DD} = 200V, I_D = 6.0A$ R _G = 25 Ω		65		ns
t _{d(off)}	Turn-off Delay Time	(note 4,5)		20		ns
t _f	Turn-off Fall Time			40		ns
Qg	Total Gate Charge	V _{DS} = 320V, I _D = 6.0A		18		nC
Q _{gs}	Gate-Source Charge	V _{GS} = 10V		2.5		nC
Q _{gd}	Gate-Drain Charge	(note 4,5)		8.5		nC


Drain-Source Diode Characteristics

I _S	Maximum Continuous Drain-Source diode			6.0	А	
I _{SM}	Maximum Pulse Drain-Source diode Forward Current				24.0	А
V _{SD}	Drain-Source diode Forward voltage	$V_{GS} = 0V, I_s = 6.0A$			1.4	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0V, I _s = 6.0A		230		nS
Q _{rr}	Reverse Recovery Charge	dl _F /dt =100 A/us (note 4)		1.8		uC


Notes

- 1. Repetitive Rating : Pulse width limited by maximum junction temperature
- 2. L = 17mH, I_{AS} = 6.0A, V_{DD} = 50V, R_G = 25 $\Omega,$ starting T_J = 25 $^\circ \! \mathbb{C}$
- 3. $I_{SD} \le 6.0A$, di/dt $\le 200A/us$, $V_{DD} \le BV_{DSS}$, starting $T_J = 25$ °C
- 4. Pulse Test : Pulse width \leq 300us, Duty cycle \leq 2%
- 5. Essentially independent of operation temperature

SFP6N40

Fig. 1 On-State Characteristics

Temperature

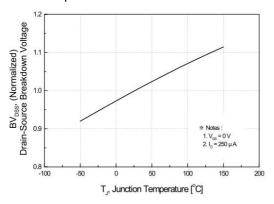


Fig. 5 Maximum Drain Current vs Case Temp.

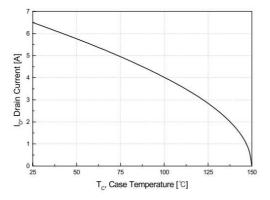
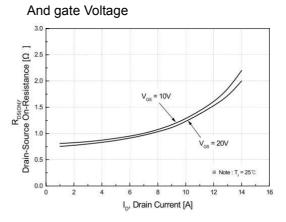
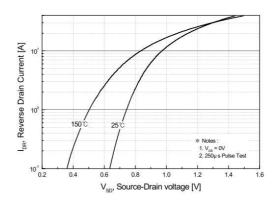
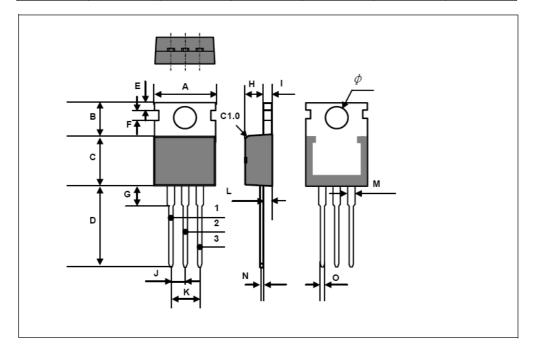


Fig. 2 On-Resistance variation vs Drain Current


Fig 4. On-Resistance Variation vs Temperature

Dim.		mm			Inch	
Dini.	Min.	Тур.	Max.	Min.	Тур.	Max.
A	9.7		10.1	0.382		0.398
В	6.3		6.7	0.248		0.264
С	9.0		9.47	0.354		0.373
D	12.8		13.3	0.504		0.524
E	1.2		1.4	0.047		0.055
F		1.7			0.067	
G		2.5			0.098	
Н	3.0		3.4	0.118		0.134
I	1.25		1.4	0.049		0.055
J	2.4		2.7	0.094		0.106
K	5.0		5.15	0.197		0.203
L	2.2		2.6	0.087		0.102
М	1.25		1.55	0.049		0.061
N	0.45		0.6	0.018		0.024
0	0.6		1.0	0.024		0.039
φ		3.6			0.142	

TO-220 Package Dimension

\$

